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CALCULATION OF STATE PROBABILITIES FOR A

STOCHASTIC LANCHESTER COMBAT MODEL

by

L. Billard

Florida State University

1. INTRODUCTION

Lanchester (1914) presented a mathematical model describing

the conflict situation of two forces in combat losing units

due to attrition. This model was deterministic in nature and as,

for example,in Gye and Lewis (1976) this approach is known to

break down in certain cases most especially when the two sides are

nearly or equally matched. In these circumstances, it is more

imperative that the process be described from a stochastic out-

look.

Therefore Billard (1979) .onsiders how stochastic analogues

of many deterministic Lanchester-type combat models can be

formulated. Basically the processes can be represented as either

a bivariate death process or a bivariate birth and death pro'cess.

That paper includes a brief discussion of how the resultant

Chapman-Kolmogorov (differential-difference) equations can be

solved to provide expressions for t..e underlying state prob-

abilities. The techniques employed are general in nature and

can be used successfully on a very wide ranging array of model

situations.
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It is proposed here to demonstrate just how these

techniques can be employed. This is done using the original

Lanchester process, a process of great interest in its own

right. First, however, the basic mathematical deterministic

and stochastic models for the Lanchester process is reviewed

briefly in Section 2. A discussion of the Severo (1969) recur-

sion solution technique is presented in Section 3 as it pertains

to the special nature of our problem. A partitioning scheme

which further facilitates exploitation of the underlying

structure is described in Section 4. Finally, in Section 5

the solution is developed.

2
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2. THE LANCHESTER MODEL

Let B(t) and R(t) be the number of units (men, tanks,

etc.) at time t in the Blue and Red force, respectively. Let

particular values of these (integer valued) variables be b

and r, respectively. Let B(0) = B0 and R(0) = R0 , assumed

to be known nonnegative quantities. The two forces are in combat

with each other and lose units by attrition. In the original

Lanchester (1914) model formulation, the force sizes at time t

are modelled deterministically according to the equations

db-t= - 1r (1)

and
dr ba -t= - 2 b

where y1 and y2 are the attrition rates of the Red and Blue

forces, respectively. For convenience,we rescale so that y2 = 1

and YI - X where now X is the relative effectiveness of the

Blue force to the Red force.

A stochastic model for this Lanchester model can be pre-

sented when we view the process as a bivariate pure death

process. Thus B(t) and R(t) are now random variables.

Suppose

Pb, r(t) = Pr{B(t) = b, R(t) = r}.

3



Then, the corresponding Chapman-Kolmogorov (differential-

difference) equations are

t Pb,r(t) =- (Xr + b) Pbr(t) + rPb+l ,r(t) + b% r+l(t) , (2a)

for (b,r) E A {(b,r):0 < b < B0, 0 < r < R0 }. For boundary

values of A, certain obvious adjustments are necessary in (2a). Thus,

when b = B0, that is, for points (B0,r) in A, r # 0 and

r 0 R0  the Chapman-Kolmogorov equations are

d PB (t) = -(Xr + B0 )p 0  (t) + B0PB (t) ; (2b),T POr 0 ,OOr ,POr+l

when r = R0, that is, for points (b,R0) in A, b B0 ,

d Pr'R0(t) = -(XR + b) PbR0(t) + XR0Pb+1R (t) ; (2c)
MT 'rR0 0 bR0 () OblR0

when r = 0, that is, for points (b,0) in A,

dI
d- M = bPb,l(t) ; (2d)

when b = 0, that is, for points (0,b) in A,

d (t) =(t) ; (2e)cl-t P0,r r("~

and when (b,r) = (B0 ,R0 ),

dPB R0 (t) = -(XR + B0 ) p W (2f)
0'#O 0 0~ PB )



I
These equations (2) can be solved by adopting the tech-

nique of Severo (1969). The first step then is to identify

each point (b,r) in A by a counting coordinate k given by

k = k(b,r) = (B0 + 1) (R 0 + 1) - b(R 0 + 1) - r

Then if we set

Yk(t) - Pb,r(t) ,(3)

we may rewrite (2) in terms of the new coordinate k. We suffice

by writing (2a) only, the other parts of (2) following similarly.

Thus, equation (2a) becomes

ddt-. Yk(t) = -(Ar + b) Yk(t) + Xr YkR 0_1 (t) + byk-1 (t) (4)

Or, in matrix terms

d y(t) = Ry(t) . (5)

Clearly, from (4), the matrix of coefficients B is lower tri-

angular. Therefore we can use Severo's recursive result to give

us

x(t)= Ce(t) (6)

where e(t) is the (B0 + 1)(R 0 + 1) x I vector with elements

exp(bkt) with bk being the kth diagonal element of B. The

elements c(i,j), i, j = i,..., (B0 + 1)(R 0 + 1), of the matrix

5



C can be found from Severo (1969, Theorem 1). That is,

a1 , UU i, (7)=1

cbi(j) = - C(i,) ,~~i1 i > j2,()

0, 1 < j,

where

C(i'j) = c O(i, j) + tc1 (i~j) +*+ t'3c. i-(i,j);

b'i~)= (bil, , b. .) ,i > j ,(8)

with b 1 j the (ij)th element of B;

hI'(j'i) =(6 0 (b i - b 1 )II... 6i 1 (b i-b) , i > j ,(9)

with

I j =0

ti ~/ (1+1), y =0;

(C~~j) rs0 otherwise (0

for r = ,.,i and s = ,.,i-j+1; and a 0)

k if 1...,0 (B 0+1)(R 0+l). 6



3. THE SOLUTION MATRIX C

The expressions for finding C given in the previous

section are the general ones given by Severo. However, a close

examination of our particular problem shows that some interest-

ing simplifications can be obtained.

Typically, a = (1,0,...,0). This corresponds to

B(O) = B0 and R(O) = R0 with probability one. We shall assume

this holds in the rest of this paper. The adjustment for the

general a case is trivial.

We notice that b(i,i-1) is simply the ith row of the

subdiagonal matrix of B. From (2) (or (5)), in our case this

vector has at most two "non-zero" elements corresponding to the

coefficients of Yk-l(r) and YkR 0_1 (t). Note that in some

instances these values may "happen to be" zero. All other

elements of b(i,i-1) are zero. We exploit this fact in the

actual determination of the elements of C.

A further simplification occurs when the coefficients

of B are time independent as is the situation for our Lanchester

model. We first note that the recursiveness in the solution

enters through the Crs(i-l,j) matrix. We also observe that

in general we can express obtained elements c(i,j) as a poly-

nomial in t, viz.,

c(i,j) = Co(i,j) + tc1 (i,j) + ''' + tij (i,j)
0i-J

7

4



I

Thus, the elements in the first column of Crs (i-l,j) are the

appropriate coefficients of t0  in the expansion of the c(i,j)'s,

the elements in the second column are the appropriate coefficients

of tI in the expansion of the c(i,j)'s, and so on. Now, in

many problems of practical interest, and in particular in our

present model, the elements c(i,j) are time independent. That

is, all elements in columns other than the first are zero. Hence,

in h(i-l,j) we need only determine the first element 60(bj- bi).

As a final comment, if bj = bi, then 60(0) is a function of

t. However, typically this situation arises when we are in a

row i whose b(i,i-l) Crs (i-l,j) elements are all zero. Thus,

the independence of c(i,j) on t remains intact.

By exploiting these features, we can determine more

readily the elements of C. Before doing this (in Section 5),

we shall pretent a partitioned form of B and hence C

which allows us to observe much of this underlying structure at

a glance.

8



4. A PARTITIONING SCHEME

First we note that the counting coordinate k orders

the points (b,r) in A as follows: (B0 ,R0 ), (B0 ,R0 -l),...,(B 0 ,0);

(B0-1,R0),..., (B0-1,0);...; (0,R0 ),..., (O,0). Thus we partition

these into groups whose b coordinate is common. That is, we

may write

B = (bu), u, v = ,..., B0 +1,

and the "elements," or submatrices, buv have elements

bu v = (bu,,(p,q)), p, q = I,..., R0+1

This is illustrated in Table 1 for the case (B0 ,R0 ) = (4,2).

Thus, the k = k(b,r)th row of B corresponds to the

p = (R0-r+l)th row of the u = (B0 -b+l)th submatrix of B;

similarly for the columns of B.

To insert the appropriate coefficients in B, we refer

to equation (2) (or (4)). It is immediately apparent that the

coefficients of Pb,r(t) (or Yk(t)) constitute the diagonal

elements of B; the coefficients of Pb,r+l(t) (or Ykl(t))

consistute the off-diagonal elements of the diagonal submatrices;

the coefficients of Pb+l,r(t) (or YkR 0 1 (t)) constitute

the diagonal elements of the off-diagonal submatrices; and all

other elements are zero. If we assertthat off-diagonal elements

of a submatrix cannot go "outside" that submatrix, then the

9



adjustments to equation (2a) which produced the remaining equations

of (2) when dealing with boundary values of (b,r) are auto-

matically taken care of. Thus, for example, when (B0 ,R0) - (4,2)

the equation relating to the boundary point (2,2) does not have

a term corresponding to P2 ,3 (t) (or Ykl(t)). If so, our B

matrix would have an entry in the spot indicated by * in

Table 1.

Thus, in our Lanchester model, B has elements

S-{X(R 0 -p+l) + (B0-u+l)} u = 1,...,B 0 , p=l,...,R 0 ,
bu (P, P) =
uu j 0, u = B0+1 and/or p = R0+I;

buu(p,p-l) = (B0 -u+l), u = I,..., B0+, p = 2,...,Ro+1;

and

b u'ul(p,p) = A(R0 -P+I), u = 2,...,B 0 +l, p = 1,...,R0+1.

Clearly then such a partitioning scheme facilitates the

construction of the matrix of coefficients B. We shall see

that the analogous partitioning of the solution matrix C

also facilitates the derivation of its elements. Thus, we write

C = (cuv) , u, v = 1,...,

and the "elements," or submatrices, c have elements
-1v

10



c Uv (cu (p,q)), pe q lvR0+

We calculate these elements in the next section.



5. CALCULATION OF C

Quite clearly, from (6), once the matrix C has been

determined, the state probabilities follow immediately. As

indicated earlier we exploit the underlying structure of B

and the accompanying partitioning scheme. For illustrative

purposes, let us take the particular case (B0 ,R0) = (4,2)

and A = .8. The corresponding B matrix of coefficients is

given in Table 1.

From equation (7), it is clear that

cuv (p,q) = 0 (11)

whenever u < v and/or p < p. That is, the upper diagonal

submatrices cuv are zero and the upper diagonals of the

remaining submatrices are also zero.

Let us take the elements in the first column for

(v,q) = (1,I).

First, from the initial condition, we have

cll(l,l) =a I  1.

Let us proceed with the (1,1) elements of the submatrices

(ul), u = 1,..., B0+1. We find from Severo,

12



c 2 1 (1,1) = (1.6 0 0) 0 (12)

( - - 0

where "-" indicates the presence of a "nonzero" element (which

in a particular case may happen to equal zero). However because

of the zeros in b(i,i-l), or in Crs(i-l,j), we do not need to

determine these quantities. Thus, equation (12) reduces to

c 21 (I,I) = (1.6) cll1(1,1)/{bh11(l,l) - bh22(11,1))

- -1.6

In general,

c u(l,l) = (1.6) cu-l,k(1,1)/{bll(l,l) - uu(1,1)1 ;

or,

C ulul'l)= (-l)U-l (1.6)U-iu 1 /U U I,.. B0 +1

Let us consider the column (v,q) = (2,1). Now,

3
c 2 2 (1,1) = - [ c21 (l,q) = 1.6 + 0 + 0 = 1.6

q=l

13



Proceeding as before, we have

1.6 ) 60(

32(1,1) = (1.6 0 0) ( :

= (1.6) c 2 2 (1,1)/{b 2 2 (l,1) -b 3 3 (1,) }

= -2.56

In general,

Cu2(l,l) = (1.6) Cu 1 ,2 (1,1)/{b 2 2 (l,1) -buu(1u1)}

= (1) u (1.6)u- 1/(u-1)! , U 2 ... B0+l.

Continuing in this manner, we can calculate all the

cuv (l,l) elements. The essential feature to note here is

that in order to determine a particular cuv (l,l) element,

first glance at the Severo result equation (7) suggests that

all previous row elements in that column of C are

necessary, whereas by exploiting the special nature of our

problem we only require the previous c u-l,l) element.

Let us now consider the elements Cuv (2,1). In

particular, let us take the first column (v,q) = (1,i).

Then, from (7),

14
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I
C (2,1) - 4cl(1,1)/{bl(1,I) - b 1 1(2,2)1}

- -5.0.

Next,

0

-5.0 0
c21 (2,1) = (0 .8 0 3)

-1.6 0 0 0

-{(.8) c 11(2,1) + 3c21 (1,1)}/{b1 1 (l,l) - b22(2,2)1}

= 4.889.

In general,

Cul (2,1)

= {(.8) cul'l(2,1)+ (B0-u+I) cul(1,l)}/{b1 1 (l,l)- b uu(2,2)}

u = I,..., B0 +1

Similarly, we can determine that

Cu2 (2,1)

= {(.8) Cu-1, 2 (
2 ,1) + (B0 -u+l) Cu2(l,l))/{b 2 2 1,l) -buu (2,2))

u = 2,..., B0+l

is

L~ I



Likewise we can calculate all the c uv(2,1) elements. Again

an essential feature is that to find a particular cu (2,1)

we need only the two previous elements cul'v(2,1) and

c uu(1,1) and not all the previous elements in that column.

Therefore by repeating this process, we can calculate

the matrix C. That is, we determine the diagonal element

u-i p-i

cuu(P, p ) = - v Cuv (p,q) - q uu (p,q)v-l q-1 q=l

Once each diagonal element is calculated, the other elkm:nts in

that same column (v,q) = (u,p) can be determined according to

Cuv (p,q)

={X,(Ro-P+l) Cu_l,v(P,q)+(Bo-U~l) C uv (P-l,q)}/{bw(q,q)-b uu (p,p))

(13)

for u = v,..., B0+I, v = 1,..., B0+, p = q,...,R0+l,

q = 1,...,R 0+i, and where equation (11) applies when applicable

in (13).

For the computer user what would be a potential storage

problem if all the previous cu (pq) elements were needed,

does not cause any undue concern since only the two appropriate

values need be retained. This assumes the program has been

set up to print out the values of C as they are determined

and that a running sum of the row elements is retained (for the

16



calculation of subsequent diagonal elements; see equation (7)).

The complete matrix C for our example is shown in

Table 2.

17



6. THE STATE PROBABILITIES

once the elements of C have been calculated, the

state probabilities Pr(t) follow readily from (3) and (6).

Thus, for example,

Pi(B(t) - 2, R(t) =1=P 2 ,1 (t)

-2.1l - *6t + 1.6e-4 .Bt + 5.5lle- 4 .6 t_ - 89-3.8t

- 3.200e 3 .6 6 + 2.489e -2.8t

and

Pi{Red forces lose no units)

4
I Pr{B(t) = b, R(t) = 2}

b=0 -5 6 4 6 
. t-2 

6
=0.192e 5.t+ 0.376e 4 6  + 0.142e 3.t+ 0.263e 2t+ 0.027

In general,

Pr{B(t) = b, R(t)=

Bo-b R 0+1

R 0 -r+l

+ cB blB-~ (R -r+l,q) exp(t B~ -b+B blq ).
q-1 B0 -b B-0 00

or, more simply, in terms of the k notation used before

partitioning,



k
Pb,r (t) k - c(kj) exp(b t)

j-1

A knowledge of the state probabilities permits the

derivation of other quantities of interest, for example, the

expected force sizes.
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